CRANY

Using Cray Performance Analysis Tools

S-2376-50

© 2006, 2007, 2009 Cray Inc. All Rights Reserved. This document or parts thereof may not be reproduced in any form unless permitted by
contract or by written permission of Cray Inc.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE
The Computer Software is delivered as " Commercial Computer Software" as defined in DFARS 48 CFR 252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided with Restricted Rights.
Use, duplication or disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR
252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or disclosure by the U.S.
Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7013, as applicable.

Cray, LibSci, and UNICOS are federally registered trademarks and Active Manager, Cray Apprentice2, Cray Apprentice2 Desktop,

Cray C++ Compiling System, Cray CX1, Cray Fortran Compiler, Cray Linux Environment, Cray SeaStar, Cray SeaStar2, Cray SeaStar2+,
Cray SHMEM, Cray Threadstorm, Cray X1, Cray X1E, Cray X2, Cray XD1, Cray XMT, Cray XR1, Cray XT, Cray XT3, Cray XT4, Cray XT5,
Cray XT5,,, Cray XT5m, CrayDoc, CrayPort, CRInform, ECOphlex, Libsci, NodeKARE, RapidArray, UNICOS/Ic, UNICOS/mk, and
UNICOS/mp are trademarks of Cray Inc.

AMD, AMD Opteron, and Opteron are trademarks of Advanced Micro Devices, Inc. GNU is atrademark of The Free Software Foundation.
Linux is atrademark of Linus Torvalds. Lustre is a trademark of Cluster File Systems, Inc. PBS Pro is atrademark of Altair Grid Technologies.
PGl isatrademark of The Portland Group Compiler Technology. SUSE is a trademark of SUSE LINUX Products GmbH, a Novell business.
TotalView isatrademark of Etnus, LLC. UNIX, the“X device,” X Window System, and X/Open are trademarks of The Open Group in the United
States and other countries. All other trademarks are the property of their respective owners.

Version 3.1 Published October 2006 First release. Supports CrayPat 3.1 and Cray Apprentice2 3.1 running on Cray XT systems.

Version 4.1 Published December 2007 Supports CrayPat 4.1 and Cray Apprentice2 4.1 running on Cray XT3, Cray XT4, and Cray XT5 systems,
including Cray XT5h systems with Cray X2 compute blades.

Version 5.0 Published September 2009 Supports CrayPat and Cray Apprentice2 5.0 release running on Cray XT systems, excluding Cray XT5h
(Cray X2) systems.

New Features

Using Cray Performance Analysis Tools S—-2376-50

This guide is a complete rewrite of Using Cray Performance Analysis Tools. It supports the 5.0 rel ease of
CrayPat and Cray Apprentice2. Major changes from earlier versions include:

* Initial documentation of Automatic Program Analysis. See Using Automatic Program Analysis on
page 21.

» Expanded documentation of pat _bui | d environment variables and build directives. See Advanced
Users: Environment Variables and Build Directives on page 22.

* Expanded documentation of the CrayPat OpenMP API. See Advanced Users: OpenMP on page 29.

» Expanded documentation of CrayPat run time environment variables. See Chapter 3, Using the CrayPat
Run Time Environment on page 31.

» Expanded documentation of the pat _hel p online help system, including the new Frequently Asked
Questions (FAQ) feature. See Online Help on page 13.

« Initial documentation of the new Cray Apprentice2 online help system. See Online Help on page 15.

e |nitial documentation of CrayPat and Cray Apprentice2 data file compatibility issues. See Upgrading from
Earlier Versions on page 14.

e The deprecated commands pat _hwpc and pat _r un are removed in this release.

* Support for Cray XT systems running the Catamount compute node operating system and Cray XT5,
systems equipped with Cray X2 compute nodes is removed in this release.

Contents

Page

Introduction [1] 9
1.1 Anayzing Program PerformancewithCrayPat 10
1.1.1 Loading CrayPat and Compiling C e e 10
1.1.2 Ingtrumentingthe Program L. Lo 11
1.1.2.1 Automatic Program Analysis L. 11
1.1.3Running the Program and CollectingData 11
1.1.4 Analyzing the Results e e e s s 12
1.150nlineHelp L Lo e s 13
1151 ReferenceFiles L 0L 13
L152PAPI . . . L 14

1.1.6 Upgrading from Earlier Versions Ce e e e 14
1.2 Analyzing Datawith Cray Apprentice2 14
121 Loading and Launching Cray Apprentice2 15
1220nlineHelpo 15
1.2.3 Upgrading from Earlier Versions Ce e e e 16
Using pat _bui | d [2] 17
21BasicProfiling Lo 17
2.2Using Predefined Trace Groupso 18
23User-defined Tracingo 19
2.3.1Enabling Tracing and the CrayPat API 19
2.3.2 Instrumenting a Single Function Ce e e 19
2.3.3 Preventing Instrumentation of a Function Ce e 19
2.3.4 Instrumenting a User-defined List of Functions Ce e 20
2.3.5 Creating New Trace Intercept Routinesfor User Files 20
2.3.6 Creating New Trace Intercept Routines for Everything Ce e 20
2.4 Using Automatic Program Analysiso 21
2.5 Advanced Users: Environment Variables and Build Directives 22
2.6 Advanced Users: The CrayPat API C e e 25
26.1Header Files L. 26

S-2376-50 5

Using Cray Performance Analysis Tools

2.6.2 APl Cdls
2.7 Advanced Users; OpenMP

Using the CrayPat Run Time Environment [3]

3.1 Summary

3.2 Common Uses
3.2.1 Controlling Run Time Summarization
3.2.2 Controlling Data File Size
3.2.3 Selecting a Predefined Experiment

3.2.3.1 Trace-enhanced Sampling

3.2.4 Measuring MPI Load Imbalance
3.2.5 Monitoring Hardware Counters

Using pat _report [4]

4.1 Using DataFiles

4.2 Producing Reports
4.2.1 Using Predefined Reports
4.2.2 User-defined Reports

4.3 Exporting Data

4.4 Automatic Program Analysis

Using Cray Apprentice2 [5]
5.1 Launching the Program
5.2 Opening Data Files
5.3 Basic Navigation
5.4 Viewing Reports
5.4.1 Overview Report
5.4.2 Environment Reports
5.4.3 Traffic Report
5.4.4 Mosaic Report
5.4.5 Activity Report
5.4.6 Function Report
5.4.7 Call Graph
5.4.8 1/0 Reports
5.4.8.11/0O Overview Report
5.4.8.21/0 Rates
5.4.9 Hardware Reports
5.4.9.1 Hardware Counters Overview Report
5.4.9.2 Hardware Counters Plot

Page

27
29

31
31
35
35
36
37
38
39
39

41
a1
42
42
45
46
46

47
47
48
49
51
51
52
53
53
54

g

54
55
55
56
56
56
56

S-2376-50

Contents

Glossary

Procedures
Procedure 1. Using CrayPat API Calls

Tables

Tablel. Run Time Environment Variables Summary
Table2. Cray Apprentice2 Navigation Functions
Table3. Common Panel Actions

Figures
Figure1l. File Selection
Figure2. Screen Navigation

S-2376-50

Page

57

26

31
49
50

48
49

Introduction [1]

S-2376-50

The Cray Performance Analysis Tools are a suite of optional utilities that enable
you to capture and analyze performance data generated during the execution of your
program on aCray XT system. The information collected and analysis produced by
use of these tools can help you to find answers to two fundamental programming
questions: How fast is my program running? and How can | make it run faster?

The Cray Performance Analysis Tools suite consists of two separately licensed
components:

* CrayPat: the program instrumentation, data capture, and basic text reporting tool
« Cray Apprentice2: the graphical analysis and data visualization tool

This guide is intended for programmers and application developers who write,
port, or optimize software applications for use on Cray XT systems running the
Cray Linux Environment (CLE) operating system. We assume you are already
familiar with the Cray XT development and execution environments and the
general principles of program optimization, and that your application is aready
fully debugged and capable of running to planned termination. If you need more
information about the Cray XT development and execution environments or about
debugging applications, see the Cray XT Programming Environment User's Guide.

A discussion of massively parallel programming optimization techniquesis beyond
the scope of this guide.

Note: The Cray Performance Analysis Tools 5.0 release does not support Cray XT
systems running the Catamount compute node operating system, nor does it
support Cray XT5, systems equipped with Cray X2 compute nodes.

Cray XT systems feature a variety of processors and support a variety of compilers.
Because of this, your results may vary from the examples discussed in this guide.
Most of the examples in this guide were developed using the Cray Compiling
Environment (CCE) 7.1 compilers on a Cray X T4 system with quad-core processors.

Using Cray Performance Analysis Tools

1.1 Analyzing Program Performance with CrayPat

The performance analysis process consists of three basic steps.

1. Instrument your program, to specify what kind of data you want to collect under
what conditions.

2. Execute your instrumented program, to generate and capture the desired data.
3. Analyze the resulting data.
Accordingly, CrayPat consists of the following major components:
e pat _bui |l d, the utility used to instrument programs
» the CrayPat run time environment, which collects the specified performance data

e pat _report,thefirst-level analysistool used to produce text reports or export
data for more sophisticated analysis

e pat _hel p, the command-line driven online help system

All CrayPat components, including the man pages and help system, are available
only when the CrayPat module is loaded.

1.1.1 Loading CrayPat and Compiling

10

To use CrayPat, first load your programming environment of choice, and then load
the CrayPat module.

> nodul e | oad xt-craypat

For successful results, the CrayPat module must be loaded before you compile the
program to be instrumented, instrument the program, execute the instrumented
program, or generate areport. If you want to instrument a program that was compiled
before the CrayPat module was loaded, you may under some circumstances find that
re-linking it is sufficient, but as arule it's best to load the CrayPat module and then
recompile.

When instrumenting a program, CrayPat requires that the object (. o) files created
during compilation be present, as well asthelibrary (. a) files, if any. However,
most compilers automatically delete the. o and . a files when working with single
source files and compiling and linking in asingle step, therefore it is good practice
to compile and link in separate steps and use the compiler command line option to
preserve these files. For example, if you are using the Cray Compiling Environment
(CCE) Fortran compiler, compile using either of these command line options:

> ftn -c sourcefilef

Alternatively:

> ftn -h keepfil es sourcefilef

S-2376-50

Introduction [1]

Then link the object files to create the executabl e program:

> ftn -0 executable sourcefile. o

For more information about compiling and linking, see your compiler's
documentation.

1.1.2 Instrumenting the Program

After the CrayPat module is loaded and the program is compiled and linked, you can
instrument your program for performance analysis experiments. Thisis done using
the pat _bui | d command. In simplest form, it is used like this:

> pat _buil d executable

This produces a copy of your original program, which is named executablet+pat (for
example, a. out +pat) and instrumented for the default experiment. Your original
executable remains untouched.

The pat _bui | d command supports a large number of options and directives,
including an API that enables you to instrument specified regions of your code.
These options and directives are documented in the pat _bui | d(1) man page and
discussed in Chapter 2, Using pat _bui | d on page 17.

The CrayPat API isdiscussed in Advanced Users: The CrayPat APl on page 25.

1.1.2.1 Automatic Program Analysis

CrayPat is also capable of performing Automatic Program Analysis, and determining
which pat _bui | d options are mostly likely to produce meaningful data from your
program. For more information about using Automatic Program Analysis, see Using
Automatic Program Analysis on page 21.

1.1.3 Running the Program and Collecting Data

S-2376-50

Instrumented programs are executed in exactly the same way as any other program;
either by using the apr un command if your site permits interactive sessions or by
using your system's batch commands.

When working on a Cray XT system, always pay attention to your file system mount
points. While it may be possible to execute a program on a login node or while
mounted on the uf s file system, this generally does not produce meaningful data.
Instead, always run instrumented programs on compute nodes and while mounted on
a high-performance file system that supports record locking, such as the Lustre file
system.

11

Using Cray Performance Analysis Tools

CrayPat supports more than fifty optional run time environment variables that enable
you to control instrumented program behavior and data collection during execution.
For example, if you use the C shell and want to collect datain detail rather than in
aggregate, consider setting the PAT_RT_SUMVARY environment variable to O (off)
before launching your program.

/1 us/ ni dO0008> set env PAT_RT_SUMVARY 0

Doing so can nearly double the amount of data available in Cray Apprentice2, but at
the cost of larger data file sizes and increased overhead.

The CrayPat run time environment variables are documented in the
i ntro_craypat (1) man page and discussed in Chapter 3, Using the CrayPat Run
Time Environment on page 31.

1.1.4 Analyzing the Results

12

Assuming your instrumented program runs to completion or planned termination,
CrayPat outputs one or more data files. The exact number, location, and content of the
datafile(s) will vary depending on the nature of your program, the type of experiment
for which it was instrumented, and the run time environment variable settings in
effect at the time of program execution.

All initial datafilesare output in . xf format, with a generated file name consisting of
your original program name, plus pat , plus the execution process ID number, plus
acode string indicating the type of data contained within the file. Depending on the
program run and the types of data collected, CrayPat output may consist of either a
single. xf datafile or adirectory containing multiple . xf datafiles.

To begin analyzing the captured data, usethe pat _r eport command. In simplest
form, it looks like this:

/1'us/ ni dO0008> pat _report myprog+pat +PlDem-n. xf

The pat _r eport command accepts either afile or directory name as input and
processes the . xf file(s) to generate atext report. In addition, it also exports the

. xf datatoasingle. ap2 file, which is both a self-contained archive that can be
reopened later using the pat _r eport command and the exported-data file format
used by Cray Apprentice2.

Thepat _r eport command provides more than thirty predefined report templates,
aswell asalarge variety of user-configurable options. These reports and options are
documented in the pat _r epor t (1) man page and discussed in Chapter 4, Using
pat _report on page41.

Note: If you are upgrading from an earlier version of CrayPat, see Upgrading from
Earlier Versions on page 14 for important information about data file compatibility.

S-2376-50

Introduction [1]

1.1.5 Online Help

The CrayPat man pages, online help, and FAQ are available only when the
Xt - craypat module isloaded.

The CrayPat commands, options, and environment variables are documented in the
following man pages:

e intro_craypat (1) — basic usage and environment variables

e pat _bui | d(1) — instrumenting options and APl usage

* hwpc(3) — optional hardware counter groups that can be used with pat _bui | d
e pat_report (1) — reporting and data-export options

In addition, CrayPat also includes an extensive online help system, which features
many examples and the answers to many frequently asked questions. To access the
help system, enter this command:

> pat _hel p

Thepat _hel p command accepts options. For example, to jump directly into the
FAQ, enter this command:

> pat _hel p FAQ

Once the help system is launched, navigation is by one-key commands (e.g., / to
return to the top-level menu) and text menus. It is not necessary to enter entire
words to make a selection from atext menu; only the significant letters are required.
For example, to select "Building Applications’ from the FAQ menu, it is sufficient
to enter Bui | .

Help system usage is documented further in the pat _hel p(1) man page.

1.1.5.1 Reference Files

When the CrayPat module is loaded, the environment variable CRAYPAT _ROOT

is defined. Advanced users will find the filesin $CRAYPAT _ROOT/ | i b and
$CRAYPAT_ROOT/ i ncl ude useful. The/ | i b directory contains the predefined
trace group definitions (see Using Predefined Trace Groups on page 18) and build
directives (see Advanced Users: Environment Variables and Build Directives on
page 22), whilethe/ i ncl ude directory contains the files used with the CrayPat AP
(see Advanced Users. The CrayPat APl on page 25).

S-2376-50 13

Using Cray Performance Analysis Tools

1.1.5.2 PAPI

CrayPat uses PAPI, the Performance API. Thisinterface is normally transparent to the
user. However, if you want more information about PAPI, seethei nt r o_papi (3)
and papi _count er s(5) man pages, as well as the PAPI Programmer's Reference
and PAPI User's Guide.

Additiona information is available through the PAPI website at
http://icl.cs.utk.edu/papi/.

1.1.6 Upgrading from Earlier Versions

If you are upgrading from an earlier version of CrayPat, be advised that file
compatibility is not maintained between versions. Programs instrumented using
earlier versions of CrayPat must be recompiled, relinked, and reinstrumented using
CrayPat 5.0. Likewise, . xf and . ap2 datafiles created using earlier versions

of CrayPat cannot be read using the release 5.0 versions of pat _r eport or
Cray Apprentice2, nor can data files created using release 5.0 be read using earlier
versions of pat _r eport or Cray Apprentice2.

If you have upgraded to release 5.0 from an earlier version of CrayPat, the earlier
version likely remains on your systeminthe/ opt / nodul ef i | es/ xt - cr aypat
directory. (This may vary depending on your site's software administration and
default version policies.) To revert to the earlier version, use the nodul e swap
command.

For example, assuming that the current default version is 5.0, to revert from CrayPat
5.0 to CrayPat 4.4 so that you can read an old . ap? file, enter this command:

> nodul e swap xt-craypat xt-craypat/4.4.0

To return to the current default version, reverse the command arguments:

> nodul e swap xt-craypat/4.4.0 xt-craypat

1.2 Analyzing Data with Cray Apprentice2

14

Cray Apprentice? is a separately licensed GUI tool for visualizing and manipulating
the performance analysis data captured during program execution. Cray Apprentice2
can display awide variety of reports and graphs, depending on the type of program
being analyzed, the way in which the program was instrumented for data capture, and
the data that was collected during program execution.

Cray Apprentice2 is not a component of CrayPat, nor isit restricted to analyzing
data generated on any particular Cray system. You do not set up or run performance
analysis experiments from within Cray Apprentice2. Rather, you use CrayPat first,
to instrument your program and capture performance analysis data, and then use
Cray Apprentice? afterwards to visualize and explore the resulting data files.

S-2376-50

http://icl.cs.utk.edu/papi/

Introduction [1]

The number and appearance of the reports that can be generated using

Cray Apprentice2 is determined by the kind and quantity of data captured during
program execution, which in turn is determined by the way in which the program
was instrumented and the environment variables in effect at the time of program
execution. For example, changing the PAT_RT_SUMVARY environment variable to
0 before executing the instrumented program nearly doubles the number of reports
available when analyzing the resulting datain Cray Apprentice2.

1.2.1 Loading and Launching Cray Apprentice2

To begin using Cray Apprentice2, load the appr ent i ce2 module:

> nodul e | oad apprentice2

You do not need to have the CrayPat module loaded in order to use Cray Apprentice2.
To launch the Cray Apprentice2 application, enter this command:

> app2 &

Note: Cray Apprentice2 requires that your workstation be configured to host

X Window System sessions. If theapp2 command returns an "unable to open
display" error, contact your system administrator for help in configuring X Window
System hosting.

You can specify an . ap2 datafile to be opened when you launch Cray Apprentice2:

> app2 my datafile. ap2 &

Otherwise, Cray Apprentice2 opens afile selection window and you can then select
the file you want to open.

For more information about using the app2 command, see the app2(1) man page.

1.2.2 Online Help

S-2376-50

Cray Apprentice2 release 5.0 features an online help system as well as numerous
pop-ups and tool-tips that are displayed by hovering the cursor over an area of interest
on achart or graph. To access the online help system, click the Help button, or
right-click on any report tab and then select Panel Help from the pop-up menu.

Feel free to experiment with the Cray Apprentice? user interface, and to left-
or right-click on any area that looks like it might be interesting. Because
Cray Apprentice2 does not write any data files, you cannot corrupt, truncate, or
otherwise damage your original . ap2 datafile using Cray Apprentice2.

15

Using Cray Performance Analysis Tools

1.2.3 Upgrading from Earlier Versions

If you are upgrading from an earlier version of Cray Apprentice2, be advised that
file compatibility is not maintained between versions. Data files created using
earlier versions of CrayPat cannot be opened in Cray Apprentice2 release 5.0, nor
can data files created using CrayPat release 5.0 be opened in earlier versions of
Cray Apprentice2.

If you have upgraded to release 5.0 from an earlier version of

Cray Apprentice2, the earlier version likely remains on your system in

the/ opt / nodul ef i | es/ apprenti ce2 directory. (This may vary depending
on your site's software administration and default version policies.) To revert to the
earlier version, use the nodul e swap command.

For example, assuming that the current default version is 5.0, to revert from
Cray Apprentice2 release 5.0 to release 4.4 so that you can read an old . ap2 file,
enter this command:

> nodul e swap apprentice2 apprentice2/4.4.0

To return to the current default version, reverse the command arguments:

> nodul e swap apprentice2/4.4.0 apprentice2

16 S-2376-50

Using pat _bui l d [2]

The pat _bui | d command is the instrumenting component of the CrayPat
performance analysis tool. After you load the xt - cr aypat module and recompile
your program, use the pat _bui | d command to instrument your program for data
capture.

CrayPat supports two categories of performance analysis experiments. tracing
experiments, which count some event such as the number of times a specific system
call is executed, and asynchronous (sampling) experiments, which capture values at
specified time intervals or when a specified counter overflows.

The pat _bui | d command is documented in more detail in the pat _bui | d(2)
man page. For additional information and examples, seepat _hel p bui | d.

2.1 Basic Profiling

The easiest way to usethe pat _bui | d command is by accepting the defaults.

> pat _bui |l d myprogram

This generates a copy of your original executable that is instrumented for the default
experiment, sanp_pc_t i me, an experiment that samples program counters at
regular intervals and produces a basic profile of the program's behavior during
execution.

A variety of other predefined experiments are available. (See Selecting a Predefined
Experiment on page 37.) However, in order to use any of these other experiments,
you must first instrument your program for tracing.

S-2376-50 17

Using Cray Performance Analysis Tools

2.2 Using Predefined Trace Groups

18

The easiest way to instrument your program for tracing is by using the - g option to
specify a predefined trace group.

> pat_build -g tracegroup myprogram

These trace groups instrument the program to trace al function entry point references
belonging to the specified group. Only those function entry points actually executed
by the program at run time are traced. The valid trace group names are:

bl acs
bl as
caf
ffio
fftw
hdf 5
heap

o

| apack
lustre
mat h
npi

net cdf
onm
portals
pt hr eads
scal apack
shmem
stdio
sysi o
system

upc

Basic Linear Algebra communication subprograms
Basic Linear Algebra subprograms

Co-Array Fortran (Cray CCE compiler only)

Flexible File I/0O (Cray CCE compiler only)

Fast Fourier Transform library

Manages extremely large and complex data collections
Dynamic heap

Includes st di 0 and sysi o groups

Linear Algebra Package

Lustre File System

ANSI math

MPI

Network common data form (manages array-oriented scientific data)
OpenMP API

Lightweight message passing AP

POSIX threads

Scalable LAPACK

SHMEM

All library functions that accept or return the FI LE* construct
I/O system calls

System calls

Unified Parallel C (Cray CCE compiler only)

S-2376-50

Using pat _bui l d [2]

Thefiles that define the predefined trace groups are kept in $CRAYPAT _ROOT/ | i b.
To see exactly which functions are being traced in any given group, examine the
Trace files. These files can also be used as templates for creating user-defined tracing
files. (See Instrumenting a User-defined List of Functions on page 20.)

2.3 User-defined Tracing

Alternatively, you can use the pat _bui | d command options to instrument specific
function entry points, to instrument a user-defined list of function entry points, to
block the instrumentation of specific functions, or to create new trace intercept
routines.

2.3.1 Enabling Tracing and the CrayPat API

To change the default experiment from sampling to tracing, activate any API calls
added to your program, and enable tracing for user-defined functions, use the - w
option.

> pat _build -w myprogram

The - woption has other implications which are discussed in the following sections.

2.3.2 Instrumenting a Single Function
To instrument a specific function by name, usethe - T option.

> pat _build -T tracefunc myprogram

This option appliesto al the entry points contained within the predefined function
groups that are used with the - g option. If the - woption is specified, user-defined
entry points are traced as well. (See Using Predefined Trace Groups on page 18.)

If tracefunc contains a slash (/) character, the string is interpreted as a basic regular
expression. If regular expressions identify any user-defined entry points, the - w
option must also be specified to generate trace wrappers.

2.3.3 Preventing Instrumentation of a Function

To prevent instrumentation of a specific function, usethe- T | option.

> pat_build -T !tracefunc myprogram

If tracefunc begins with an exclamation point (!) character, references to tracefunc
are not traced.

S-2376-50 19

Using Cray Performance Analysis Tools

2.3.4 Instrumenting a User-defined List of Functions

To trace a user-defined list of functions, usethe-t option.

> pat_build -t tracefile myprogram

The tracefile is a plain ASCII text file listing the functions to be traced.
For an example of atracefile, see any of the predefined Trace files in
$CRAYPAT_ROOT/ | i b.

To specify user-defined functions, also include the - w option.

2.3.5 Creating New Trace Intercept Routines for User Files

To create new trace intercept routines for those function entry points that are defined
in the respective source file owned by the user, use the - u option.

> pat _build -u myprogram

To prevent a specific function entry point entry-point from being traced, use the- T!
option.

> pat _build -u -T !entry-point’ myprogram

2.3.6 Creating New Trace Intercept Routines for Everything

20

To make tracing the default experiment, activate the CrayPat API, and create new
trace intercept routines for those function entry points for which no trace intercept
routine already exists, use the - woption.

> pat_build -w -t tracefilef...] -T symbol[...] myprogram

If -t,-T,orthetrace build directive are not specified, only those function entry
points necessary to support the CrayPat run time library aretraced. If -t , - T, or the
t r ace build directive are specified, and - wis not specified, only those function
points that have pre-existing trace intercept routines are traced.

S-2376-50

Using pat _bui l d [2]

2.4 Using Automatic Program Analysis

S-2376-50

The Automatic Program Analysis feature lets CrayPat suggest how your program
should be instrumented, in order to capture the most useful data from the most
interesting areas. To use this feature, follow these steps.

1. Instrument the original program.

$ pat_build -O apa my_program

This produces the instrumented executable my_program+pat .
2. Run the instrumented executable.

$ aprun my_program+pat

This produces the data file my_progranm+pat +PID-nodesdt . xf , which contains
basic asynchronously derived program profiling data.

3. Usepat _report to processthe datafile.
$ pat _report my _programtpat +PID-nodesdt . xf
This produces three results:
e asampling-based text report to st dout

e an. ap2 file (my_progrant+pat +PID-nodesdt . ap2), which contains both
the report data and the associated mapping from addresses to functions and
source line numbers

e an. apa file (my_program+pat +PID-nodesdt . apa), which contains the
pat _bui | d arguments recommended for further performance analysis

4. Reinstrument the program, this time using the . apa file.
$ pat _build -O my_program+pat +PID-nodesdt . apa

It is not necessary to specify the program name, asthisis specified in the . apa
file. Invoking this command produces the new executable, my_progranm+apa,
this time instrumented for enhanced tracing analysis.

5. Run the new instrumented executable.
$ aprun my_programt+apa

This produces the new datafile my_program+pat +PID2-nodesdt . xf , which
contains expanded information tracing the most significant functions in the
program.

Using Cray Performance Analysis Tools

6. Usepat _report to processthe new datafile.

$ pat _report my_program+pat +PID2-nodesdt . xf
This produces two results.
e atracing report to st dout

e an. ap2 file(my_program+pat +PID2-nodesdt . ap2) containing both
the report data and the associated mapping from addresses to functions and
source line numbers

For more information about Automatic Program Analysis, seepat _hel p APA.

2.5 Advanced Users: Environment Variables and Build

Directives

22

CrayPat supports a number of environment variables and build directives that
enable you to fine-tune the behavior of the pat _bui | d command. The following
environment variables are currently supported.

PAT_BU LD_LI NK_DI R

If set, specifies the directory in which the object and archive files
can be found.

PAT_BUI LD_NOCLEANUP

If set, specifiesif the directory used for intermediate temporary files
isremoved when pat _bui | d terminates.

PAT_BUI LD_OPTI ONS

If set, specifiesthe pat _bui | d options that are to be evaluated
before any options on the command line.

PAT_BUI LD_TRACE_ARCHI VE

If set to nonzero, archive files writable by the user are eligible

to have their function entry points traced when the - u option is
specified. Thisis the default behavior. To disable this behavior, set
this environment variable to zero.

PAT_BUI LD_VERBCSE

If set, specifies the detail level of the progress messages related to
the instrumentation process. This value corresponds to the number
of - v options specified.

S-2376-50

Using pat _bui l d [2]

S-2376-50

Build directives are invoked either by usingthepat _bui |l d - d optiontoreadina
build directives file (by default, SCRAYPAT_ROOT/ | i b/ Bui | dDi r ecti ves),
or by using the pat _bui | d - D option to specify individual directives. The
following build directives are currently supported. The format of each directiveis
dirname=dirvalue.

force-instr=y|n

By default, the pat _bui | d command does not permit a program
to be instrumented if it already has been instrumented by another
method. If thisdirectiveis set toy, the pat _bui | d command
ignores the check for prior instrumentation and attempts to force
instrumentation of the program. The other methods of instrumenting
a program include:

the PERFCTR, PFM or PAPI libraries

» thel OBUF or FPMPI libraries

e GNU profiling or GNU coverage anaysis
e MPI profiling functions

e previoususe of thepat _bui I d command

Caution: Using this directive to force instrumentation of a
A previoudly instrumented program may result in an executable that

produces incorrect results, exhibits unpredictable behavior, or

generatesinvalid CrayPat performance analysis data.

i nval i d=entry-point[, entry-point...]

Specifies one or more function entry points in the original program
that inhibit any instrumentation.

I i nk-f at al =operand[, operand...]

Specifies one or more operands that, if present in the original link,
will prevent the instrumented link from occurring.

| i nk-i gnor e=operand[, operand...]

Specifies one or more operands that, if present in the original link,
will not be passed down to the instrumented link.

l'i nk-ignore-Iibs=lib[, lib...]

Specifies one or more object or archive files that, if present in the
original link, will not be passed down to the instrumented link.

I i nk-i nstr=operand[, operand...]

Specifies one or more operands to include in the instrumented link.

23

Using Cray Performance Analysis Tools

24

I i nk- obj s=dfilg, ofile...]
Specifies one or more object files to include in the instrumented link.
link-options-file=y|n

By default, the link that produces the instrumented program inserts
| d operands not included in the link of the original program inline.
If settoy, thisdirective putsthe | d operandsinto afile and uses
thel d @i | e syntax to include the options. This requires GNU

| d version 2.6.19 or later.

rt env=name=valuel,name=value,...]

Embeds the run time environment variable name in the instrumented
program and setsit to value value. If arun time environment variable
is set using both this directive and in the execution environment, the
value set in the execution environment takes precedence and this
value is ignored.

For more information about run time environment variables, see the
i ntro_craypat (1) man page.

t r ace=entry-point[, entry-point,...]

Specifies one or more function entry points in the original program
to trace. If entry-point is preceded by the! character, function
entry-point is not allowed to be traced.

trace-args=y |n

Collect and record at run time the values of formal parameters for
generated trace intercept routines. The default isn.

trace-conpl ex=y |n

If settoy, generate a wrapper for function entry points that return a
complex value. The default isn.

t r ace- debug=strng[,strng2,...]

Add verbose print statements to generated trace intercept routines.
The string strng identifies part or all of the function entry point
name. The print statements are activated at run time when the
PAT_RT_VERBOSE environment variable is set to nonzero. This
may be helpful if atraced function entry point is suspected of causing
arun time error.

S-2376-50

Using pat _bui l d [2]

trace-fil e=strng[,strng2,...]

Activate or deactivate tracing of function entry pointsin afile.

The string strng identifies part or all of the file name to activate or
deactivate. If strng is preceded by an exclamation point (!) function
entry points in the matched file(s) are not traced.

trace- nmax=n

The maximum number of function entry points in the original
program that can be traced. The default is 1024. Tracing alarge
number of entry points results in degraded performance of the
instrumented program at run time.

trace-obj - si ze=min,max

Specifies the minimum and maximum size in bytes of object and
archivefiles to trace.

t race- ski p=strng[,strng2,...]

Silently ignore function entry points when processing them for
tracing. The string strng identifies part or all of the function entry
point name.

trace-t ext-si ze=min,max

Specifies the minimum and maximum size in bytes of text sections
in user-defined function entry pointsto trace. This does not apply to
entry points defined in the trace function groups.

varargs=y |n

If set toy, function entry points that accept variable arguments can
be traced. The default isn.

2.6 Advanced Users: The CrayPat API

S-2376-50

There may be times when you want to focus on a certain region within your code,
either to reduce sampling overhead, reduce data file size, or because only a particular
region or function is of interest. In these cases, use the CrayPat API to insert calls
into your program source, to turn data capture on and off at key points during
program execution. By using the CrayPat AP, it is possible to collect data for
specific functions upon entry into and exit from the functions, or even from one or
more regions within the body of the function.

The general procedure for using the CrayPat API looks like this.

25

Using Cray Performance Analysis Tools

2.6.1 Header Files

26

Procedure 1. Using CrayPat API Calls

1

Load the CrayPat module.

> nodul e | oad xt-craypat

Include the CrayPat API header file in your source code. Header files for both
Fortran and C/C++ are provided in $CRAYPAT_ROOT/ i ncl ude.

Modify your source code to insert API calls where wanted.
Compile your code.

Usethe pat _bui | d - woption to build the instrumented executable.
Additional functions can aso be specified using the-t or - T options. The - u
option (see Creating New Trace Intercept Routines for User Files on page 20)
may be used, but it is not recommended as it forces pat _bui | d to create an
entry point for every user-defined function, which may inject excessive tracing
overhead and obscure the results for the regions.

Run the instrumented program, and use the pat _r eport command to examine
the results.

CrayPat API calls are supported in both Fortran and C. The include files are found in
$CRAYPAT_ROOT/ i ncl ude.

The C header file, pat _api . h, must be included in your C source code.

The Fortran header files, pat _api f. h and pat _api f 77. h, may be included
in your source or used for reference purposes only. The header filepat _api f. h
can be used only with compilers that accept Fortran 90 constructs such as
new-style declarations and interface blocks. The alternative Fortran header file,
pat _api f 77. h, isfor use with compilers that do not accept such constructs.

S-2376-50

Using pat _bui l d [2]

2.6.2 API Calls

The following API cals are supported. All APl usage must begin with a
PAT regi on_begi n cal and end with aPAT_r egi on_end call. The examples
below show C syntax. The Fortran functions are similar.

i nt
i nt

i nt
i nt
i nt
i nt

S-2376-50

PAT _regi on_begi n (i nt id, const char *label)
PAT region_end (i nt id)

Defines the boundaries of aregion. For each region, a summary

of activity including time and hardware performance counters (if
selected) is produced. The argument id assigns a numerical valueto
the region and must be greater than zero. Each id must be unique
across the entire program.

The argument label assigns a character string to the region, allowing
for easier identification of the region in the report.

Two run time environment variables affect region processing:
PAT_RT_REGQ ON_CALLSTACK and PAT_RT_REQ ON_MAX.
Seethei ntro_craypat (1) man page for more information about
these environment variables.

PAT record (i nt state)

PAT st ate (i nt state)
PAT_sanpl i ng_state (i nt state)
PAT traci ng_state (i nt state)

PAT_r ecor d controls the state for all threads on the executing
PE. Asarule, use PAT_r ecor d unlessthereis aneed for different
behaviors for sampling and tracing.

If it is necessary to use the lower-level API functions
(PAT_sanpl i ng_st at eor PAT_traci ng_st at e), these
control the state for the respective experiment for the executing
thread only. The PAT_st at e API function is similar to the other
lower-level API functions, but determines the active experiment
itself.

27

Using Cray Performance Analysis Tools

The lower-level API functions change the state of sampling or tracing
to state, where state can have one of the following values:

PAT_STATE_ON

Activates the state.
PAT_STATE_OFF

Deactivates the state.
PAT_STATE_QUERY

Returns the current value of state without changing
it.

All other values have no effect on the state. The state at the time of
the call is returned.

int PAT trace_user_| (const char *str, int expr, ...)

Issues a TRACE_USER record into the experiment data file if the
expression expr evaluates to true. The record contains the identifying
string str and the arguments, if specified, in addition to other
information, including a timestamp.

Returns the value of expr.
This function applies to tracing experiments only.

This function is supported for C and C++ programs only, and is not
available in Fortran.

int PAT trace_user_v (const char *sr, int expr, int nargs, |ong *args)

Issues a TRACE_USER record into the experiment data file if the
expression expr evaluates to true. The record contains the identifying
string str and the arguments, if specified, in addition to other
information, including a timestamp.

nargs indicates the number of 64—bit arguments pointed to by args.
These arguments are included in the TRACE _USER record.

Returns the value of expr.

This function applies to tracing experiments only.

voi d PAT trace_user (const char *str)

28

Issues a TRACE_USER record containing the identifying string str
into the experiment datafile.

This function applies to tracing experiments only.

S-2376-50

Using pat _bui l d [2]

i nt PAT trace_function(const void *addr,int state)

Activates or deactivates the tracing of the instrumented function
indicated by the function entry address addr. The argument stateis
the same as state above. Returns nonzero if the function at the entry
address was activated or deactivated, otherwise, zero is returned.

This function applies to tracing experiments only.
i nt PAT_flush_buffer (void)

Writes al of the recorded contents in the data buffer to the
experiment datafile for the calling PE and calling thread. The
number of bytes written to the experiment datafileisreturned. After
writing the contents, the data buffer is empty and starts to refill. See
i ntro_craypat (1) to control the size of the write buffer.

Note: The data collected by the PAT _t r ace_user API functionsis not
currently shown on any report. Advanced users may want to collect it and extract
information from atext dump of the data files.

For more information about CrayPat APl usage, see the pat _bui | d(1) man
page. Additional information and examples are provided in the help system under
pat _hel p API.

2.7 Advanced Users: OpenMP

S-2376-50

For programs that use the OpenMP programming model, CrayPat can measure
the overhead incurred by entering and leaving parallel regions and work-sharing
constructs within parallel regions, show per-thread timings and other data, and
calculate the load balance across threads for such constructs.

For programs that use both MPI and OpenMP, profiles by default compute load
balance across all threads in all ranks, but you can also see load balances for each
programming model separately. For more information about reporting load balance
by programming model, seethe pat _r epor t (1) man page.

The Cray CCE compiler automatically inserts calls to trace pointsin the CrayPat run
time library in order to support the required CrayPat measurements.

PGI compiler release 7.2.0 or later automatically inserts calls to trace points. For
al other compilers, including earlier releases of the PGI compiler suite, the user is
responsible for inserting API cals.

29

Using Cray Performance Analysis Tools

30

The following C functions are used to instrument OpenM P constructs for compilers
that do not support automatic instrumentation. Fortran subroutines with the same
names are also available.

voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d

PAT _onp_parall el _enter (void);
PAT _onmp_parallel _exit (void);
PAT_onp_paral | el _begin (void);
PAT _onmp_parall el _end (void);
PAT _onp_Il oop_enter (void);
PAT_onp_l oop_exit (void);

PAT _onp_sections_enter (void);
PAT _onp_sections_exit (void);
PAT_onp_section_begin (void);
PAT _onp_section_end (void);

Note that the CrayPat OpenMP API does not support combined parallel work-sharing
constructs. To instrument such a construct, it must be split into a parallel construct
containing a work-sharing construct.

Use of the CrayPat OpenMP API function must satisfy the following requirements.

e If onemember of an_enter/ _exit or_begi n/ _end pair iscalled, the other
must also be called.

» Cadlsto_enter or _begi n functions must immediately precede the relevant
construct. Callsto _end or _exi t functions must immediately follow the
relevant construct.

» For agiven parallel region, all or none of the four functions with prefix
PAT _onp_paral | el must be called.

» For agiven "sections' construct, all or none of the four functions with prefix
PAT _onp_sect i on must be called.

e A'single" construct should be treated as if it were a "sections" construct
consisting of one section.

S-2376-50

Using the CrayPat Run Time Environment [3]

3.1 Summary

The CrayPat run time environment variables communicate directly with an
executing instrumented program and affect how data is collected and saved.
Detailed descriptions of all run time environment variables are provided in the

i ntro_craypat (1) man page. Additional information can be found in the online
help system under pat _hel p envi r onnment .

This chapter provides a summary of the run time environment variables, and
highlights the more commonly used ones and what they are used for.

All CrayPat run time environment variable names begin with PAT_RT_. Some
require discrete values, while others are toggles. In the case of dl toggles, a value of
1 ison (enabled) and O is off (disabled).

Table 1. Run Time Environment Variables Summary

Variable Name

Short Description Default

PAT_RT_BUI LD _ENV Toggle: use run time environment 1

variables embedded using the
pat _buil drtenv directive.

PAT_RT_CALLSTACK Specify the depth to which to trace 100
call stacks.
PAT_RT_CALLSTACK BUFFER SI ZE Specify the size in bytes of the run 4NVB

time summary buffer used to collect
function call stacks.

PAT_RT_CHECKPQO NT Set the maximum number of 32

PAT_RT_COWVENT

checkpoint states collected.

Specify string to insert into unset
experiment data files.

PAT_RT_CONFI G_FI LE Specify configuration file(s) unset

S-2376-50

containing run time environment
variables.

31

Using Cray Performance Analysis Tools

Variable Name Short Description Default
PAT_RT_DOFORK Toggle: enable collection of runtime 0
datain a new data file for each forked
process.
PAT RT EXIT AFTER INIT Toggle: terminate execution after 0

PAT_RT_EXPERI MENT

PAT_RT_EXPFI LE_APPEND

PAT_RT_EXPFI LE_DI R

PAT_RT_EXPFI LE_FI FO

PAT_RT_EXPFI LE_MAX

PAT_RT_EXPFI LE_NAVE

PAT_RT_EXPFI LE_PES

PAT_RT_EXPFI LE_REPLACE

PAT_RT_EXPFI LE_SUFFI X

PAT_RT_HEAP_BUFFER_SI ZE

PAT_RT_HWPC

PAT_RT_HWPC_DOMAI N

32

initialization of the CrayPat run time
library.

Specify the performance analysis
experiment to perform.

Toggle: append experiment data
records to existing experiment data
file.

Specify the directory in which to
write the experiment data file.

Toggle: create data file as named
FIFO pipe instead of aregular file.

Specify the maximum number of data

files created.

Specify the base name of the
experiment datafile.

Specify the individual PES from
which to collect and record data.

Toggle: enable overwriting of existing

experiment data file(s).
Specify the default experiment data
filename suffix.

Specify the size in bytes of the
buffer used to collect dynamic heap
information.

Specify the hardware performance
counter groups to be monitored.

Specify the domain (1, 2, 4) in which

hardware performance counters are
active.

sanp_pc_tinme
if instrumented
asynchronoudly,
otherwise
trace

0

current
execution
directory
0

256

base name of
instrumented
executable

al PEs

. xf

2VB

unset

1

S-2376-50

Using the CrayPat Run Time Environment [3]

Variable Name Short Description Default

PAT _RT_HWPC FI LE Specify file(s) containing hardware unset
performance counter event
specifications.

PAT_RT_HWPC FI LE_GROUP Specify file(s) containing hardware unset
performance counter group
definitions.

PAT_RT_HWPC_MPX Toggle: enable multiplexing of 0
hardware performance counter events.

PAT_RT_HWPC_OVERFLOW Specify hardware performance unset
counter overflow frequency and
interrupt values.

PAT_RT _| NTERVAL Specify the sampling interval in 10000
microseconds.

PAT_RT_| NTERVAL_TI MER Specify the type of interval timer 2
(0-2) used for sampling-by-time
experiments.

PAT_RT_MEMORY_SET Specify the 64-bit pattern used to 0
initialize all dynamically allocated
memory used by CrayPat.

PAT_RT_MPI _SYNC Toggle: measure MPI load imbalance 1 for tracing
by measuring the time spent in barrier experiments, 0
and sync calls before entering the for sampling
collective. experiments

PAT _RT_OFFSET Specify the offset in bytes of the 0
starting virtual address in the text
segment to begin sampling.

PAT_RT_OWP_SYNC TRI ES Specify the number of sleep intervals 100 sleeps
performed by OpenMP slave threads at 100,000
waiting for the main thread to microsecond
complete CrayPat run time library intervals
initialization.

PAT_RT_OPEN_MAX Specify the maximum number of system
file descriptions that can be open maximum
simultaneously.

PAT_RT_RECORD_API Toggle: enable recording of data 1

PAT_RT_RECORD PE

S-2376-50

generated by CrayPat API functions.

Deprecated: see
PAT_RT_EXPFI LE_PES.

Using Cray Performance Analysis Tools

Variable Name

Short Description

Default

PAT_RT_RECORD THREAD

PAT_RT_REG ON_CALLSTACK

PAT_RT_REG ON_MAX

PAT_RT_SAMPLI NG_MODE

PAT_RT_SAVPLI NG_SI GNAL

PAT_RT_SETUP_SI GNAL_HANDLERS

PAT_RT_SI ZE

PAT_RT_SUMVARY

PAT_RT_THREAD MAX

PAT_RT_TRACE_DEPTH

PAT_RT_TRACE_EA TOLERANCE

PAT_RT_TRACE_FUNCTI ON_ARGS

PAT_RT_TRACE_FUNCTI ON_DI SPLAY

34

Specify the individual threads to
collect data from.

Specify the maximum stack
depth for CrayPat API functions
PAT _regi on_begi n and
PAT_regi on_end.

Specify the largest numerical ID
that may be used as an argument
to CrayPat APl functions
PAT_r egi on_begi n and
PAT regi on_end.

Specify the mode (0-3) in which
trace-enhanced sampling operates.

Specify the signal issued when an
interval timer expires or a hardware
counter overflows.

Toggle: ignore received signalsin
order to produce a more accurate
traceback.

Specify the number of contiguous
bytes in the text segment to sample.

Toggle: enable run time
summarization and data aggregation.

Specify the maximum number of
POSIX or OpenMP threads that can
be created for each process.

Specify the maximum depth of the
run time callstack.

Specify the number of lowest-order
bits ignored when determining if a
function entry addressiis activated for
tracing.

Specify the maximum number of
function entry point argument values
recorded each time the function is
caled.

Toggle: write the function entry point
names that have been instrumented to
stdout .

al threads

128

100

29
(S| GPROF)

al bytesin
segment

1

512

256

0

S-2376-50

Using the CrayPat Run Time Environment [3]

Variable Name Short Description

Default

PAT_RT_TRACE FUNCTION LIM TS Specify instrumented function entry
points to be ignored when tracing.

PAT_RT_TRACE_FUNCTI ON_MAX Set maximum number of traces
generated for asingle process.

PAT_RT_TRACE_ HEAP Toggle: collect dynamic heap
information.

PAT_RT_TRACE HOOKS Toggle: record trace data
for functions containing
compiler-generated hooks.

PAT_RT_TRACE_LOOPS Toggle: collect loop information
for use with compiler-guided
optimization.

PAT_RT_TRACE OVERHEAD Specify the number of times calling

overhead is sampled during program
initialization and termination.

PAT_RT_TRACE THRESHOLD PCT Set relative time threshold below
which function trace records are not
kept.

PAT _RT_TRACE THRESHOLD TI ME Set absolute time threshold below
which function trace records are not
kept.

PAT_RT_VALI DATE_SYSCALLS Toggle: prevent program from

executing function calls that interfere
with data collection.

PAT_RT_VERBGCSE Toggle: show CrayPat run time
activity messages.

PAT_RT_WRI TE_BUFFER S| ZE Size of single thread data collection
buffer in bytes.

unset

unlimited

100

unset

unset

8VB

3.2 Common Uses

3.2.1 Controlling Run Time Summarization
Variable: PAT_RT_SUMVARY

Run time summarization is enabled by default. When it is enabled, datais captured in
detail, but automatically aggregated and summarized before being saved. This greatly

reduces the size of the resulting experiment data files but at the cost of fine-grain

detail. Specifically, when running tracing experiments, the formal parameter values,

function return values, and call stack information are not saved.

S-2376-50

35

Using Cray Performance Analysis Tools

If you want to study your data in detail, and particularly if you want to use
Cray Apprentice2 to generate charts and graphs, disable run time summarization by
setting PAT_RT_SUMVARY to 0. Doing so can more than double the number of

reports available in Cray Apprentice2.

3.2.2 Controlling Data File Size

Depending on the nature of your experiment and the duration of the program run, the
data files generated by CrayPat can be quite large. To reduce the files to manageable

36

sizes, considering adjusting the following run time environment variables.

For sampling experiments, try these:
PAT_RT_CALLSTACK
PAT_RT_EXPFI LE_PES
PAT_RT_HWPC

PAT_RT_HWPC OVERFLOW
PAT_RT_| NTERVAL
PAT_RT_SUMVARY

PAT_RT_SI ZE

For tracing experiments, try these:

PAT_RT_CALLSTACK
PAT_RT_EXPFI LE_PES
PAT_RT_HWPC
PAT_RT_RECORD_THREAD
PAT_RT_SUMVARY
PAT_RT_TRACE_FUNCTI ON_ARGS
PAT_RT_TRACE_FUCNTI ON_LI M TS
PAT_RT_TRACE_FUNCTI ON_MAX
PAT_RT_TRACE_THRESHOLD PCT
PAT_RT_TRACE_THRESHOLD TI ME

S-2376-50

Using the CrayPat Run Time Environment [3]

3.2.3 Selecting a Predefined Experiment

S-2376-50

Variable: PAT_RT_EXPERI MENT

By default, CrayPat instruments programs for a program-counter sampling
experiment, sanp_pc_t i me, which samples program counters by time and
produces a generalized profile of program behavior during execution. However, if
any function entry points are instrumented for tracing by using the pat _bui | d
-g,-u,-t,-T,-0 or - woptions, then the program is instrumented for atracing
experiment, which traces calls to the specified function entry point(s).

After your program is instrumented using pat _bui | d, use the
PAT_RT_EXPERI MENT environment variable to further specify the type of
experiment to be performed.

Note: Samples generated from sampling by time experiments apply to the process
as awhole, and not to individual threads. Samples generated from sampling by
overflow experiments apply to individual threads.

The valid experiment types are:
sanp_pc_tine

The default sampling experiment samples the program counters

at regular intervals and records the total program time and the
absolute and relative times each program counter was recorded.
The default sampling interval is 10,000 microseconds by user

and system CPU time intervals, but this can be changed using

the PAT_RT_| NTERVAL and PAT_RT | NTERVAL_TI MER
environment variables. Optionally, this experiment also records the
values of the hardware performance counters specified using the
PAT_RT_HWPC environment variable.

sanmp_pc_ovfl

This experiment samples the program counters at the overflow

of a specified hardware performance counter. The counter and
overflow value are specified using the PAT_RT_HWPC_OVERFLOW
environment variable. Optionally, this experiment also records the
values of the hardware performance counters specified using the
PAT_RT_HWPC environment variable. The default overflow counter
iscycl es and the default overflow frequency equates to an interval
of 1,000 microseconds.

sanp_cs_tine

This experiment issimilar to thesanp_pc_ti me experiment, but
samples the call stack at the specified interval and returns the total
program time and the absolute and relative times each call stack
counter was recorded.

37

Using Cray Performance Analysis Tools

sanp_cs_ovfl

This experiment is similar to the sanp_pc_ovf | experiment but
samples the call stack.

sanp_ru_tine

This experiment issimilar to the sanp_pc_t i ne experiment but
samples system resources.

sanmp_ru_ovfl

This experiment issimilar to the sanp_pc_ovf | experiment but
samples system resources.

sanp_heap_ti ne

This experiment issimilar to the sanp_pc_t i me experiment but
samples dynamic heap memory management statistics.

sanp_heap_ovfl

trace

This experiment is similar to the sanp_pc_t i me experiment but
samples dynamic heap memory management statistics.

Tracing experiments trace the function entry points that were
specified usingthepat _build-g,-u,-t,-T,-O or - woptions
and record entry into and exit from the specified functions. Only
true function calls can be traced; function calls that are inlined by
the compiler or that have local scopein acompilation unit cannot be
traced. The behavior of tracing experimentsis also affected by the
PAT_RT_TRACE_DEPTH, PAT_RT_TRACE_EA TOLERANCE,
PAT_RT_TRACE_FUNCTI ON_ARGS,

PAT_RT_TRACE_FUNCTI ON_DI SPLAY, and
PAT_RT_TRACE_FUNCTI ON_LI M TS environment variables, al
of which are described in more detail inthei ntro_craypat (1)
man page.

Note: If a program is instrumented for tracing and then you use
PAT_RT_EXPERI MENT to specify a sampling experiment, trace-enhanced
sampling is performed.

3.2.3.1 Trace-enhanced Sampling

38

Environment variable: PAT_RT_SAMPLI NG_MODE

If you use pat _bui | d toinstrument a program for atracing experiment and then
use PAT_RT_EXPERI MENT to specify a sampling experiment, trace-enhanced
sampling is enabled and affects both user-defined functions and predefined function

groups.

S-2376-50

Using the CrayPat Run Time Environment [3]

Trace-enhanced sampling is affected by the PAT _RT_SAMPLI NG_MODE
environment variable. This variable can have one of the following values:

0 Ignore trace-enhanced sampling. Perform a normal tracing
experiment. (Default)

1 Enable raw sampling. Any traced entry points present in the
instrumented program are ignored.

2 Enable focused sampling. Only traced entry points and the functions
they call are sampled.

3 Enable bubble sampling. Traced entry points and any functions they
call return a sample program counter address mapped to the trace
entry point.

Trace-enhanced sampling is also affected by the PAT_RT_SAMPLI NG_SI GNAL
environment variable. This variable can be used to specify the signal that isissued
when an interval timer expires or a hardware counter overflows. The default value
is29 (SI GPROF).

3.2.4 Measuring MPI Load Imbalance

Environment variable: PAT_RT_MPI _SYNC

In MPI programs, time spent waiting at a barrier before entering a collective can be
asignificant indication of load imbalance. The PAT_RT_MPI _SYNC environment
variable, if set, causes the trace wrapper for each collective subroutine to measure
the time spent waiting at the barrier call before entering the collective. Thistimeis
reported by pat _r eport inthefunction group MPl _SYNC, which is separate from
the MPI function group, which shows the time actually spent in the collective.

This environment variable affects tracing experiments only and is set on by default.

3.2.5 Monitoring Hardware Counters

S-2376-50

Environment variable: PAT_RT_HWPC

Use this environment variable to specify hardware countersto be monitored while
performing tracing experiments. The easiest way to use this feature is by specifying
the ID number of one of the predefined hardware counter groups; these groups and
their meanings vary depending on your system's processor architecture and are
defined in the hwpc (3) man page.

More adventurous users may want to load the PAPI module and then use this
environment variable to specify one or more hardware counters by PAPI name. To
load the PAPI module, enter this command:

> nodul e | oad xt - papi

39

Using Cray Performance Analysis Tools

40

Thenusethe papi _avai |l andpapi _nati ve_avai |l commandsto explorethe
list of counters available on your system. For more information about using PAPI,
seethei ntro_papi (3), papi _avai | (1), and papi _nati ve_avai | (1) man
pages.

The behavior of the PAT_RT_HWPC environment variable is also

affected by the PAT_RT_HWPC_DOVAI N, PAT_RT_HWPC_FI LE,

PAT_RT_HWPC_FI LE_GROUP, and PAT_RT_HWPC_OVERFL OWenvironment
variables. All of these are described in detail inthei nt r o_cr aypat (1) man page.

S-2376-50

Using pat _report [4]

Thepat _report command is the reporting component of the CrayPat performance
analysistool. After you usethepat _bui | d command to instrument your program,
set the run time environment variables as desired, and then execute your program, use
the pat _r eport command to generate text reports from the resulting data and
export the data for use in other applications.

Thepat _report command is documented in detail in the pat _r eport (1)
man page. Additional information can be found in the online help system under
pat _hel p report.

4.1 Using Data Files

The data files generated by CrayPat vary depending on the type of program being
analyzed, the type of experiment for which the program was instrumented, and the
run time environment variables in effect at the time the program was executed. In
general, the successful execution of an instrumented program produces one or more
. Xf files, which contain the data captured during program execution.

Unless specified otherwise using run time environment variables, these file names
have the format a.out+pat +PID- NIDe[m]. xf , where:

a.out The name of the instrumented executable.
PID The process ID assigned to the instrumented executable at run time.

NID The physical node ID upon which the rank zero process was
executed.

e The type of experiment performed, either s for sampling or t for
tracing.

m An optional code indicating other specia characteristics of the
program that produced the data file. These can be:

d The data was generated by a distributed memory
process such as MPI, SHMEM, UPC, or CAF.

f The data was generated by aforked process.
0 The data was generated by OpenMP.
t The data was generated by POSIX threads.

S-2376-50 41

Using Cray Performance Analysis Tools

Usethepat _r eport command to processtheinformation in individual . xf files
or directories containing . xf files. Upon execution, pat _r eport automatically
generates an . ap2 file, which is both a self-contained archive that can be reopened
later using the pat _r epor t command and the exported-data file format used by
Cray Apprentice2.

Note: If the executable was instrumented with thepat _bui | d - O apa option,
running pat _report onthe. xf file(s) also producesan . apa file, which isthe
file used by Automatic Program Analysis. See Using Automatic Program Analysis
on page 21.

4.2 Producing Reports

To generate areport, usethe pat _r eport command to process your . xf file or
directory containing . xf files.

> pat _report aout+pat +PIDgm]- n. xf

The complete syntax of the pat _r eport command is documented in the
pat _report (1) man page.

Note: Running pat _r eport automatically generatesan . ap?2 file, whichis
both a self-contained archive that can be reopened later using the pat _r eport
command and the exported-data file format used by Cray Apprentice2. Also, if the
executable was instrumented with the pat _bui | d - O apa option, running
pat _report onthe. xf file(s) producesan . apa file, which isthe file used by
Automatic Program Analysis. See Using Automatic Program Analysis on page 21.

The pat _r eport command is a powerful report generator with a wide range

of user-configurable options. However, the reports that can be generated are first
and foremost dependent on the kind and quantity of data captured during program
execution. For example, if areport does not seem to show the level of detail you are
seeking when viewed in Cray Apprentice2, consider re-running your program with
PAT_RT_SUMVARY set to zero (disabled).

4.2.1 Using Predefined Reports

42

The easiest way to use pat _r eport isby using the - Oto specify one of the
predefined reports. For example, enter this command to see a top-down view of the
calltree.

> pat_report -O calltree datafile xf

The predefined reports currently available are:
profile Show data by function name only.
cal l ers (orca)

Show function callers (bottom-up view).

S-2376-50

Using pat _report [4]

S-2376-50

calltree (orct)

catsrc
ct+src

heap

Show calltree (top-down view).
Show line numbersin callers.
Show line numbersin calltree.

Impliesheap_pr ogr am heap_hi wat er, and heap_| eaks.
Instrumented programs must be built using thepat _buil d - g
heap option in order to show heap_hi wat er and heap_I eaks
information.

heap_program

Compare heap usage at the start and end of the program, showing
heap space used and free at the start, and unfreed space and
fragmentation at the end.

heap_hi wat er

heap_| eaks

If thepat _buil d -g heap option was used to instrument the
program, this report option shows the heap usage "high water" mark,
the total number of alocations and frees, and the number and total
size of objects allocated but not freed between the start and end of
the program.

If thepat _buil d -g heap option was used to instrument the
program, this report option shows the largest unfreed objects by call
site of alocation and PE number.

| oad_bal ance

Implies| oad_bal ance_program | oad_bal ance_gr oup,
and | oad_bal ance_f uncti on. Show PEs with maximum,
minimum, and median times.

| oad_bal ance_pr ogram
| oad_bal ance_gr oup
| oad_bal ance_function

For the whole program, groups, or functions, respectively, show the
i mb_ti me (difference between maximum and average time across
PEs) in secondsand thei mb_ti nme%(nb_ti me/ max_time *
NunPEs/ (NunPEs - 1)). For example, an imbalance of 100%
for afunction means that only one PE spent time in that function.

| oad_bal ance_cm

If thepat _build -g npi option was used to instrument the
program, this report option shows the load balance by group with
collective-message statistics.

43

Using Cray Performance Analysis Tools

| oad_bal ance_sm

If thepat _build -g npi option was used to instrument the
program, this report option shows the load balance by group with
sent-message statitics.

| oops If the compiler - h profil e_generat e option was used
when compiling and linking the program, display loop count and
optimization guidance information.

npi _callers

Show MPI sent- and collective-message statistics.
npi _smcallers

Show MPI sent-message statistics.
npi _coll _callers

Show MPI collective-message statistics.
npi _dest _bytes

Show MPI bin statistics as total bytes.
npi _dest _counts

Show MPI bin statistics as counts of messages.
npi _sm rank_order

Uses sent message data from tracing MPI functions to generate
suggested MPI rank order information. Requires the program to be
instrumented using thepat _bui I d -g npi option.

npi _rank_or der

Usestime in user functions, or aternatively, any other metric
specified by usingthe-s nmro_netri ¢ options, to generate
suggested MPI rank order information.

profile_pe.th

Show the imbalance over the set of all threads in the program.
profile_pe_th

Show the imbalance over PEs of maximum thread times.
profile_th_pe

For each thread, show the imbaance over PEs.

44 S-2376-50

Using pat _report [4]

programti nme

Shows which PEs took the maximum, median, and minimum time for
the whole program.

read_stats
wite stats

If thepat _build -g i o optionwas used to instrument the
program, these options show the 1/0 statistics by filename and by PE,
with maximum, median, and minimum |/O times.

sanp_profil e+src
Show sampled data by line number with each function.
thread tines

For each thread number, show the average of all PE times and the
PEs with the minimum, maximum, and median times.

Note: By default, al reports show either no individual PE values or only the PEs
having the maximum, median, and minimum values. The suffix _al | can be
appended to any of the above options to show the data for al PEs. For example,
the option | oad_bal ance_al | shows the load balance statistics for all PEs
involved in program execution. Use this option with caution, asit can yield very
large reports.

4.2.2 User-defined Reports

S-2376-50

In addition to the - O predefined report options, the pat _r eport command supports
awide variety of user-configurable options that enable you to create and generate
customized reports. These options are described in detail in the pat _r eport (1)
man page and examples are provided in the pat _hel p online help system.

If you want to create customized reports, pay particular attentiontothe - s, - d, and
- b options.

-s These options define the presentation and appearance of the report,
ranging from layout and labels, to formatting details, to setting
thresholds that determine whether some datais considered significant
enough to be worth displaying.

-d These options determine which data appears on the report. The range
of dataitemsthat can be included also depends on how the program
was instrumented, and can include counters, traces, time cal culations,
mflop counts, heap, I/0, and MPI data. Aswell, these options enable
you to determine how the values that are displayed are calculated.

-b These options determine how data is aggregated and labeled in the
report summary.

45

Using Cray Performance Analysis Tools

For more information, seethe pat _r eport (1) man page. Additional information
and examples can be found in the pat _hel p online help system.

4.3 Exporting Data

When you use the pat _r eport command to view an . xf file or adirectory
containing . xf files, pat _report automatically generatesan . ap2 file, whichis
a self-contained archive file that can be reopened later using either pat _r eport

or Cray Apprentice2. No further work is required in order to export data for usein
Cray Apprentice2.

Note: Data file compatibility is not maintained between versions. If you are
upgrading from an earlier version, . ap?2 files created with earlier versions cannot
be used with release 5.0, nor can files created with release 5.0 be viewed with
earlier versions. For more information, see Upgrading from Earlier Versions on

page 14.

Thepat _report -f option also enables you to export data to ASCII text or
XML-format files. When used in this manner, pat _r eport functionsasa
data export tool. The entire data file is converted to the target format, and the
pat _report filtering and formatting options are ignored.

4.4 Automatic Program Analysis

46

If your executable was instrumented using the pat _bui | d - O apa option,
running pat _r eport onthe. xf datafile also produces an . apa file containing
the recommended parameters for reinstrumenting the program for more detailed
performance analysis. For more information about Automatic Program Analysis, see
Using Automatic Program Analysis on page 21.

S-2376-50

Using Cray Apprentice2 [5]

Cray Apprentice2 is an interactive X Window System tool for visualizing and
mani pulating performance analysis data captured during program execution.

The number and appearance of the reports that can be generated using

Cray Apprentice2 is determined solely by the kind and quantity of data captured
during program execution. For example, changing the PAT_RT_SUMVARY
environment variable to 0 (zero) before executing the instrumented program nearly
doubles the number of reports available when analyzing the resulting datain

Cray Apprentice2.

5.1 Launching the Program

S-2376-50

To begin using Cray Apprentice2, load the appr ent i ce2 module. If thismoduleis
not part of your default work environment, enter the following command to load it:

> nodul e | oad apprentice2

Note: You do not need to have the CrayPat module loaded in order to use
Cray Apprentice2.

To launch the Cray Apprentice2 application, enter this command:
> app2 &

Alternatively, you can specify the filename to open on launch:

> app2 myfile. ap2 &

Note: Cray Apprentice2 requires that your workstation be configured to host

X Window System sessions. If theapp2 command returns an "unable to open
display" error, see your system administrator for information about configuring X
Window System hosting.

The app2 command supports two options; --linit and--1imt_per_pe.
These options enable you to restrict the amount of data being read in from the data
file. Both options recognize the K, M and G abbreviations for kilo, mega, and giga; for
example, to open an . ap2 datafile and limit Cray Apprentice2 to reading in the first
3 million data items, enter this command:

> app2 --limt 3M data file ap2 & &

47

Using Cray Performance Analysis Tools

The--1imt option setsagloba limit on datasize. The--1imt_per_pe

sets the limit on a per processing element basis. Depending on the nature of the
program being examined and the internal structure of the data file being analyzed, the
--limt_per_peisgeneraly preferable, asit preserves data parallelism.

For more information about the app2 command, see the app2(1) man page.

5.2 Opening Data Files

48

If you specified avalid data file or directory on the app2 command line, the file or
directory is opened and the dataiis read in, parsed, and displayed.

If you did not specify a datafile or directory on the command line, the File Selection
Window is displayed.

Figure 1. File Selection

| i |
MNew Folder Delete File Bename File
fufs/home/users/smith/Apps/new_swim = ‘
Folders ‘ = Eiles ‘ El
swim_mpi

swim_mpi+pat
swim_mpli+pat+1876/
swim_mpi+pat+1877/ swim_mpi+pat+1877.ap2
swim_mpi.F

swim_mpi.o

| | swim_seq.F

Selection: /ufs/home/users/smith/Appsinew_swim

swim_mpi+pat+1876.ap2

Note: Aswith all other screensin Cray Apprentice2, the exact appearance of the
File Selection window varies depending on which version of the Gimp Tool Kit
(GTK) isinstalled on your X Windows System workstation.

After you select a datafile, the datais read in. When Cray Apprentice2 finishes
parsing the data, the Overview is displayed.

S-2376-50

Using Cray Apprentice2 [5]

5.3 Basic Navigation

Cray Apprentice2 displays awide variety of reports, depending on the program being
studied, the type of experiment performed, and the data captured during program
execution. While the number and content of reports varies, all reports share the
following general navigation features.

Figure 2. Screen Navigation

[b ==
File Help
vmfix+m.ap2|

. ,
@ev <R M
- Overview

Sort by Calls B Sort by Time b4

mpi_isend_:ZB.Z%‘

mpi_waitall_:23.1%

mpi_allreduce_:50.7%

mpi_irecv_:23.2%

mpi_allreduce_:11.3%

mpi_startall_:19.1%

Table 2. Cray Apprentice2 Navigation Functions

Callout

Description

1

S-2376-50

The File menu enables you to open datafiles or directories,
capture the current screen display to a.. j pg file, or exit from
Cray Apprentice2.

The Data tab shows the name of the data file currently
displayed. You can have multiple data files open simultaneously
for side-by-side comparisons of data from different program
runs. Click a datatab to bring a data set to the foreground.
Right-click the tab for additional options.

49

Using Cray Performance Analysis Tools

50

Callout

Description

3

The Report toolbar show the reports that can be displayed for
the data currently selected. Hover the cursor over an individual
report icon to display the report name. To view areport, click
the icon.

The Report tabs show the reports that have been displayed thus
far for the data currently selected. Click atab to bring areport
to the foreground. Right-click atab for additional report-specific
options.

The main display varies depending on the report selected and
can be resized to suit your needs. However, most reports feature
pop-up tips that appear when you alow the cursor to hover
over an item, and active data elements that display additional
information in response to left or right clicks.

On many reports, the total duration of the experiment is shown
as a graduated bar at the bottom of the report window. Move
the caliper pointsleft or right to restrict or expand the span of
time represented by the report. Thisis aglobal setting for each
datafile: moving the caliper pointsin one report affects all other
reports based on the same data, unless those other reports have
been detached or frozen.

All report tabs feature right-click menus, which display both common options
and additional report-specific options. The common right-click menu options are
described in Table 3. Report-specific options are described in Viewing Reports on

page 51.

Table 3. Common Panel Actions

Option Description

Screendump Capture the report or graphic image currently displayed
and saveittoa. j pg file.

Detach Panel Display the report in a new window.

Remove Panel Close the window and remove the report tab from the
main display.

Freeze Panel Freeze the report as shown. Subseguent changes to the
caliper points do not change the appearance of the frozen
report.

Panel Help Display report-specific help, if available.

S-2376-50

Using Cray Apprentice2 [5]

5.4 Viewing Reports

The reports Cray Apprentice? produces vary depending on the types of performance
analysis experiments conducted and the data captured during program execution. The
report icons indicate which reports are available for the data file currently selected.
Not all reports are available for all data.

The following sections describe the individual reports.

5.4.1 Overview Report

S-2376-50

The Overview Report is the default report. Whenever you open a datafile, thisis
the first report displayed.

When the Overview Report is displayed, look for:

* Inthe pie chart on the left, the calls and functions in the program, sorted by the
number of times the calls or functions were invoked and expressed as a percentage
of the total call volume.

* Inthe pie chart on the right, the calls and functions in the program, sorted by
the amount of time spent performing the calls or functions and expressed as a
percentage of the total program execution time.

* Hover the cursor over any section of a pie chart to display a pop-up window
containing specific detail about that call or function.

* Right-click the Report Tab to display a pop-up menu that lets you show or
hide compute time. Hiding compute time is useful if you want to focus on the
communications aspects of the program.

« Alternately, click the Toggle to view this report as a bar graph.

The Overview report is a good general indicator of how much time your program
is spending performing which activities and a good place to start looking for load
imbalance.

To explore this further, click the function of interest to display a L oad Balance Report
for the function.

The Load Baance Report shows:

e Theload balance information for the function you selected on the Overview
Report. This report can be sorted by either PE, Calls, or Time. Click a column
heading to sort the report by the valuesin the selected column.

e The minimum, maximum, and average times spent in this function, as well as
standard deviation.

* Hover the cursor over any bar to display PE-specific quantitative detail.

51

Using Cray Performance Analysis Tools

Together, the Overview and Load Balance reports provide a good first ook at the
behavior of the program during execution and can help you identify opportunities for
improving code performance. Look for functions that take a disproportionate amount
of total execution time and for PEs that spend considerably more time in afunction
than other PEs do in the same function. This may indicate a coding error, or it may be
the result of a data-based |oad imbalance.

To further examine load balancing issues, examine the Mosaic and Delta View
reports (if available), and look for any communication "hotspots' that involve the PEs
identified on the Load Balance Report.

5.4.2 Environment Reports

52

The Environment Reports provide general information about the conditions under
which the data file currently being examined was created. Asarule, thisinformation
is useful only when trying to determine whether changes in system configuration have
affected program performance.

The Environment Reports consists of four panes. The Env Var s pane lists the values
of the system environmental variables that were set at the time the program was
executed.

Note: This does not include the pat _bui | d or CrayPat environment variables
that were set at the time of program execution.

The System Info pane lists information about the operating system.

The Resource Limits pane lists the system resource limits that were in effect at the
time the program was executed.

The Heap I nfo pane lists heap usage information.

There are no active data elements or right-click menu options in any of the
Environment Reports.

S-2376-50

Using Cray Apprentice2 [5]

5.4.3 Traffic Report

The Traffic Report showsinternal PE-to-PE traffic over time. The information on this
report is broken out by communication type (read, write, barrier, and so on). While
this report is displayed, you can:

» Hover over an item to display quantitative information.

e Zoom in and out, either by using the zoom buttons or by drawing a box around
the area of interest.

* Right-click an area of interest to open a pop-up menu, which enables you to hide
the origin or destination of the call or go to the calsite in the source code, if the
source file is available.

* Right-click the report tab to access alternate zoom in and out controls, or to filter
the communications shown on the report by the duration of the messages.

Filtering messages by duration is useful if you're only interested in a particular
group of messages. For example, to see only the messages that take the most
time, move the filter caliper points to define the range you want, and then click
the Apply button.

The Traffic Report is often quite dense, and typically requires zooming in to reveal
meaningful data. Look for large blocks of barriersthat are being held up by asingle
PE. This may indicate that the single PE is waiting for a transfer, or it can aso
indicate that the rest of the PEs are waiting for that PE to finish a computational piece
before continuing.

5.4.4 Mosaic Report

S-2376-50

The Mosaic Report depicts the matrix of communications between source and
destination PEs, using colored blocks to represent the relative communication times
between PEs. By default, this report is based on average communication times.
Right-click on the report tab to display a pop-up menu that gives you the choice of
basing this report on the Total Calls, Total Time, Average Time, or Maximum Time.

The graph is color-coded. Light green blocks indicates good values, while dark red
blocks may indicate problem areas. Hover the cursor over any block to show the
actual values associated with that block.

Use the diagonal scrolling buttons in the lower right corner to scroll through the
report and look for red "hot spots." These are generally an indication of bad data
locality and may represent an opportunity to improve performance by better memory
or cache management.

53

Using Cray Performance Analysis Tools

5.4.5 Activity Report

The Activity Report shows communication activity over time, bucketed by logical
function such as synchronization. Compute time is not shown.

Look for high levels of usage from one of the function groups, either over the entire
duration of the program or during a short span of time that affects other parts of the
code. You can use the calipersto filter out the startup and close-out time, or to narrow
the data being studied down to a single iteration.

5.4.6 Function Report

5.4.7 Call Graph

54

The Function Report is a table showing the time spent by function, as both awall

clock time and percentage of total run time. This report also shows the number of
cals to the function, the number of call sitesin the code that call the function, the
extent to which the call is imbalanced, and the potential savings that would result

if the function were perfectly balanced.

Thisisan active report. Click on any column heading to sort the report by that
column, in ascending or descending order. In addition, if asourcefileislisted for a
given function, you can click on the function name and open the source file at the
point of the call.

Look for routines with high usage, a small number of cal sites, and the largest
imbalance and potential savings, as these are the often the best places to focus your
optimization efforts.

The Call Graph shows the calling structure of the program as it ran and charts the
relationship between callers and callees in the program. This report is a good way to
get a sense of what is calling what in your program, and how much relative timeis
being spent where.

Each call site is a separate node on the chart. The relative horizontal size of a node
indicates the cumulative time spent in the node's children. The relative vertical size of
a node indicates the amount of time being spent performing the computation function
in that particular node.

Nodes that contain only callers are green in color.
By default, routines that do not lead to the top routines are hidden.

Nodes that contain callees and represent significant computation time aso include
stacked bar graphs, which present load-balancing information. The yellow bar in the
background shows the maximum time, the purple bar on the left shows the average
time, and the cyan (light blue) bar on the right shows the minimum time spent in
the function. The larger the yellow area visible within a node, the greater the load
imbalance.

S-2376-50

Using Cray Apprentice2 [5]

While the Call Graph report is displayed, you can:
* Hover the cursor over any node to further display quantitative data for that node.
* Double-click on leaf node to display aLoad Balance report for that callsite.

* Right-click the report tab to display a pop-up menu. The options on this menu
enable you to change this report so that it shows all times as percentages or
actual times, or highlights imbalance percentages and the potential savings from
correcting load imbalances. This menu also enables you to filter the report by
time, so that only the nodes representing large amounts of time are displayed, or
to unhide everything that has been hidden by other options and restore the default

display.

* Right-click any node to display another pop-up menu. The options on this menu
enable you to hide this node, use this node as the base node (thus hiding all other
nodes except this node and its children), jump to this node's caler, or go to the
source code, if available.

» Usethe zoom control in the lower right corner to change the scale of the graph.
This can be useful when you are trying to visualize the overall structure.

e Usethe Search control in the lower center to search for a particular node by
function name.

* Usethe >> toggle in the lower left corner to show or hide an index that lists
the functions on the graph by name. When the index is displayed, you can
double-click afunction name in the index to find that function in the Call Graph.

5.4.8 1/0 Reports

The 1/O reports are available only if 1/0O traffic information has been captured. In
general, these reports are useful for identifying 1/0 bottlenecks and conflicts.

There are two 1/O reports:
* |/O Overview

* |/O Rates

5.4.8.1 1/O Overview Report

S-2376-50

The 1/0 Overview Report is similar to the Load Balance Report, but shows I/0
operations and cumulative times by file descriptor. Like the Load Balance Report, it
can help you identify opportunities to improve performance by correcting imbalances
in the distribution of 1/0 work.

This report can be sorted by clicking on the column headings.

55

Using Cray Performance Analysis Tools

5.4.8.2 1/0 Rates

The I/O Rates Report is a table listing quantitative information about the program's
I/0 usage. The report can be sorted by any column, in either ascending or descending
order. Click on acolumn heading to change the way that the report is sorted.

Look for I/O activities that have low average rates and high data volumes. This may
be an indicator that the file should be moved to a different file system.

5.4.9 Hardware Reports

The Hardware reports are available only if hardware counter information has been
captured. There are two Hardware reports:

* Hardware Counters Overview

* Hardware Counters Plot

5.4.9.1 Hardware Counters Overview Report

The Hardware Counters Overview Report is a bar graph showing hardware counter
activity by call and function, for both actual and derived PAPI metrics. While this
report is displayed, you can:

» Hover the cursor over acall or function to display quantitative detail.

» Click the "arrowhead" toggles to show or hide more information.

5.4.9.2 Hardware Counters Plot

56

The Hardware Counters Plot displays hardware counter activity over time and
resembles an EKG trace or a seismographic chart. Use this report to ook for
correlations between different kinds of activity. This report is most useful when you
are more interested in knowing when a change in activity happens, rather than in the
precise quantity of the change.

L ook for slopes, trends, and drastic changes across multiple counters. For example, a
sudden decrease in floating point operations, accompanied by a sudden increasein L1
cache activity, may indicate a problem with caching or data locality. To zero-in on
problem areas, use the calipers to narrow the focus to time-spans of interest on this
graph, and then look at other reports to learn what is happening at these times.

To display the value of a specific data point, along with the maximum value, hover the
cursor over the area of interest on the chart.

S-2376-50

Glossary

S-2376-50

blade

1) A field-replaceable physical entity. A Cray XT service blade consists of AMD
Opteron sockets, memory, Cray SeaStar chips, PCI-X or PCle cards, and a blade
control processor. A Cray XT compute blade consists of AMD Opteron sockets,
memory, Cray SeaStar chips, and a blade control processor. A Cray X2 compute
blade consists of eight Cray X2 chips (CPU and network access links), two voltage
regulator modules (VRM) per CPU, 32 memory daughter cards, a blade controller for
supervision, and a back panel connector. 2) From a system management perspective,
alogical grouping of nodes and blade control processor that monitors the nodes on
that blade.

Catamount

The operating system kernel developed by Sandia National Laboratories and
implemented to run on Cray XT single-core compute nodes. See also Catamount
Virtual Node (CVN); compute node.

Catamount Virtual Node (CVN)
The Catamount kernel enhanced to run on dual-core Cray XT compute nodes.

CLE
The operating system for Cray XT systems.

compute node

A node that runs application programs. A compute node performs only computation;
system services cannot run on compute nodes. Compute nodes run a specified kernel
to support either scalar or vector applications. See aso node; service node.

login node

The service node that provides a user interface and services for compiling and
running applications.

57

Using Cray Performance Analysis Tools

58

module
See blade.

node

For CLE systems, the logical group of processor(s), memory, and network
components acting as a network end point on the system interconnection network.

node ID

A decimal number used to reference each individual node. The node ID (NID) can be
mapped to a physical location.

processing element

A processing element is one instance of an executable propagated by the Application
Level Placement Scheduler (ALPS).

service node

A node that performs support functions for applications and system services. Service
nodes run SUSE LINUX and perform specialized functions. There are six types of
predefined service nodes: login, 1O, network, boot, database, and syslog.

S-2376-50

	Using Cray Performance Analysis Tools
	New Features
	Introduction [1]
	1.1 Analyzing Program Performance with CrayPat
	1.1.1 Loading CrayPat and Compiling
	1.1.2 Instrumenting the Program
	1.1.2.1 Automatic Program Analysis

	1.1.3 Running the Program and Collecting Data
	1.1.4 Analyzing the Results
	1.1.5 Online Help
	1.1.5.1 Reference Files
	1.1.5.2 PAPI

	1.1.6 Upgrading from Earlier Versions

	1.2 Analyzing Data with Cray Apprentice2
	1.2.1 Loading and Launching Cray Apprentice2
	1.2.2 Online Help
	1.2.3 Upgrading from Earlier Versions

	Using pat_build [2]
	2.1 Basic Profiling
	2.2 Using Predefined Trace Groups
	2.3 User-defined Tracing
	2.3.1 Enabling Tracing and the CrayPat API
	2.3.2 Instrumenting a Single Function
	2.3.3 Preventing Instrumentation of a Function
	2.3.4 Instrumenting a User-defined List of Functions
	2.3.5 Creating New Trace Intercept Routines for User Files
	2.3.6 Creating New Trace Intercept Routines for Everything

	2.4 Using Automatic Program Analysis
	2.5 Advanced Users: Environment Variables and Build Directives
	2.6 Advanced Users: The CrayPat API
	2.6.1 Header Files
	2.6.2 API Calls

	2.7 Advanced Users: OpenMP

	Using the CrayPat Run Time Environment [3]
	3.1 Summary
	3.2 Common Uses
	3.2.1 Controlling Run Time Summarization
	3.2.2 Controlling Data File Size
	3.2.3 Selecting a Predefined Experiment
	3.2.3.1 Trace-enhanced Sampling

	3.2.4 Measuring MPI Load Imbalance
	3.2.5 Monitoring Hardware Counters

	Using pat_report [4]
	4.1 Using Data Files
	4.2 Producing Reports
	4.2.1 Using Predefined Reports
	4.2.2 User-defined Reports

	4.3 Exporting Data
	4.4 Automatic Program Analysis

	Using Cray Apprentice2 [5]
	5.1 Launching the Program
	5.2 Opening Data Files
	5.3 Basic Navigation
	5.4 Viewing Reports
	5.4.1 Overview Report
	5.4.2 Environment Reports
	5.4.3 Traffic Report
	5.4.4 Mosaic Report
	5.4.5 Activity Report
	5.4.6 Function Report
	5.4.7 Call Graph
	5.4.8 I/O Reports
	5.4.8.1 I/O Overview Report
	5.4.8.2 I/O Rates

	5.4.9 Hardware Reports
	5.4.9.1 Hardware Counters Overview Report
	5.4.9.2 Hardware Counters Plot

	Glossary
	List of Procedures
	Procedure 1. Using CrayPat API Calls

	List of Figures
	Figure 1. File Selection
	Figure 2. Screen Navigation

	List of Tables
	Table 1. Run Time Environment Variables Summary
	Table 2. Cray Apprentice2 Navigation Functions
	Table 3. Common Panel Actions

